Application of Machine Learning in Statistical Process Control Charts: A Survey and Perspective

نویسندگان

چکیده

Over the past decades, control charts, one of essential tools in Statistical Process Control (SPC), have been widely implemented manufacturing industries as an effective approach for Anomaly Detection (AD). Thanks to development technologies like Internet Things (IoT) and Artificial Intelligence (AI), Smart Manufacturing (SM) has become important concept expressing end goal digitization manufacturing. However, SM requires a more automatic procedure with capabilities deal huge data from continuous simultaneous process. Hence, traditional charts SPC now find difficulties reality activities including designing, pattern recognition, interpreting stages. Machine Learning (ML) algorithms emerged powerful analytic great assistance that can be integrating solve these issues. Therefore, purpose this chapter is first presents survey on applications ML techniques stages respectively especially context AD. Second, challenges areas are discussed. Third, perspectives techniques-based AD proposed. Finally, case study ML-based chart bearing failure also provided chapter.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical process control charts.

An outbreak of invasive aspergillosis among allogeneic bone marrow transplants: a case-control study. Infect Confvol1985;6:347-355. 3. Sherertz RJ, Belani A, Kramer BS. et al. Impact of air filtration on nosocomialA@ergil-lus infections. Unique risk of bone marrow transplant recipients. A discriminant scorecard for diagnosis of invasive pulmonary asper-gillosis in patients with acute leukemia. ...

متن کامل

individual qualities and integrative motivation and their prediction of non-linguistic outcomes of learning english in intermediate iranian students: a psychological perspective

abstract this study investigated the predictability of variables from a motivational framework as well as individuals qualities to predict three non-linguistic outcomes of language learning. gardners socio-educational model with its measures has been used in the current study. individual qualities presented in this study include (1) age, (2) gender, and (3) language learning experience. the...

development and implementation of an optimized control strategy for induction machine in an electric vehicle

in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...

15 صفحه اول

Multivariate statistical process control charts: an overview

In this paper we discuss the basic procedures for the implementation of multivariate statistical process control via control charting. Furthermore, we review multivariate extensions for all kinds of univariate control charts, such as multivariate Shewhart-type control charts, multivariate CUSUM control charts and multivariate EWMA control charts. In addition, we review unique procedures for the...

متن کامل

features of short story in translated and non-translated literature: a polysystemic perspective

ترجمه متون ادبی در دنیای امروز از اهمیت ویژه ای برخوردار است. فرهنگ های مختلف با استفاده از متون ادبی ملل و فرهنگ های دیگر سعی در غنی کردن فرهنگ و ادبیات کشور خود دارند. کشور ما نیز از این قاعده مستثنی نیست. در ایران، ترجمه متون ادبی اروپائی که با دوران مشروطه ایرانی آغاز می شود موجب تغییرات اساسی در فرهنگ، شیوه زندگی و تفکر ایرانیان شده است. در این دوران نه تنها در امورات سیاسی و فکری کشور تغی...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Springer series in reliability engineering

سال: 2021

ISSN: ['1614-7839', '2196-999X']

DOI: https://doi.org/10.1007/978-3-030-83819-5_2